An ACP-independent fatty acid synthesis pathway in archaea: implications for the origin of phospholipids.

نویسندگان

  • Jonathan Lombard
  • Purificación López-García
  • David Moreira
چکیده

Fatty acids (FAs) are major building blocks of membrane phospholipids in bacteria and eukaryotes. Their presumed absence in archaea led to propose a late origin in bacteria and eukaryotes and that the last common ancestor of living organisms (the cenancestor) was devoid of both FA and phospholipid membranes. However, small FA amounts and homologs of bacterial FA biosynthesis enzymes are found in archaea. We have investigated the origin of these archaeal enzymes using phylogenomic analyses of all enzymes of the main bacterial FA biosynthesis pathway. Our results suggest that modern archaea and their last common ancestor possessed a complete pathway except for the acyl carrier protein (ACP) processing machinery, which evolved in the bacterial lineage. This has not only implications for archaeal physiology but also opens the possibility for the presence of ACP-independent FA synthesis in the cenancestor, which may have been endowed with FA-phospholipid membranes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phylogenomic Investigation of Phospholipid Synthesis in Archaea

Archaea have idiosyncratic cell membranes usually based on phospholipids containing glycerol-1-phosphate linked by ether bonds to isoprenoid lateral chains. Since these phospholipids strongly differ from those of bacteria and eukaryotes, the origin of the archaeal membranes (and by extension, of all cellular membranes) was enigmatic and called for accurate evolutionary studies. In this paper we...

متن کامل

Fatty Acid Composition of Human Follicular Fluid Phospholipids and Fertilization Rate in Assisted Reproductive Techniques

Background: Fatty acids are known to be critically important in multiple biological functions. Phospholipid fatty acids of follicular fluid, an important microenvironment for the development of oocytes, may contribute to the women’s fertility and the efficacy of assisted reproduction techniques. The aim of this study was to investigate the effect of fatty acid composition of follicular fluid ph...

متن کامل

Thematic review series: Glycerolipids. Acyltransferases in bacterial glycerophospholipid synthesis.

Phospholipid biosynthesis is a vital facet of bacterial physiology that begins with the synthesis of the fatty acids by a soluble type II fatty acid synthase. The bacterial glycerol-phosphate acyltransferases utilize the completed fatty acid chains to form the first membrane phospholipid and thus play a critical role in the regulation of membrane biogenesis. The first bacterial acyltransferase ...

متن کامل

O-16: Metabolism of Exogenous Fatty Acids, Fatty Acid-Mediated Cholesterol Efflux, PKA and PKC Pathways in Boar Sperm Acrosome Reaction

Background: For understanding the roles of fatty acids on the induction of acrosome reaction which occurs under association of cholesterol efflux and PKA or PKC pathways in boar spermatozoa, metabolic fate of alone and combined radiolabeled 14C-oleic acid and 3H-linoleic acid incorporated in the sperm was compared, and behavior of cholesterol and effects of PKA and PKC inhibitors upon fatty aci...

متن کامل

Ralstonia solanacearum RSp0194 Encodes a Novel 3-Keto-Acyl Carrier Protein Synthase III

Fatty acid synthesis (FAS), a primary metabolic pathway, is essential for survival of bacteria. Ralstonia solanacearum, a β-proteobacteria member, causes a bacterial wilt affecting more than 200 plant species, including many economically important plants. However, thus far, the fatty acid biosynthesis pathway of R. solanacearum has not been well studied. In this study, we characterized two form...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 29 11  شماره 

صفحات  -

تاریخ انتشار 2012